
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Network Security (NetSec)

IN2101 – WS 16/17

Prof. Dr.-Ing. Georg Carle

Cornelius Diekmann

Version: February 24, 2017

Chair of Network Architectures and Services
Department of Informatics

Technical University of Munich

Chapter 8: Secure Channel

Secure Channel

MAC-then-Enc vs. Enc-then-MAC

Secure Channel Implementation

Secure Channel (ESP) in the OpenBSD Kernel

Authenticated Encryption With Associated Data

AEAD & Secure Channel (ESP) in the Linux Kernel

Attacks against a Secure Channel (Stream Cipher)

Attacks against a Secure Channel (Padding oracle)

Chapter 8: Secure Channel 8-1

Chapter 8: Secure Channel

Secure Channel

MAC-then-Enc vs. Enc-then-MAC

Secure Channel Implementation

Secure Channel (ESP) in the OpenBSD Kernel

Authenticated Encryption With Associated Data

AEAD & Secure Channel (ESP) in the Linux Kernel

Attacks against a Secure Channel (Stream Cipher)

Attacks against a Secure Channel (Padding oracle)

Chapter 8: Secure Channel 8-2

Secure Channel

Alice
knows k

Bob
knows k

m1, m2, m3, ...

What do we want?

• Confidentiality, Integrity, Authenticity

• Messages received in correct order

• No duplicates and we know which messages are missing

Chapter 8: Secure Channel – Secure Channel 8-3

Chapter 8: Secure Channel

Secure Channel

MAC-then-Enc vs. Enc-then-MAC

Secure Channel Implementation

Secure Channel (ESP) in the OpenBSD Kernel

Authenticated Encryption With Associated Data

AEAD & Secure Channel (ESP) in the Linux Kernel

Attacks against a Secure Channel (Stream Cipher)

Attacks against a Secure Channel (Padding oracle)

Chapter 8: Secure Channel 8-4

MAC-then-Enc vs. Enc-then-MAC

Enck -enc (m, MACk -int (m))

vs.

Enck -enc (m), MACk -int (m)

vs.

Enck -enc (m), MACk -int (Enck -enc (m))

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-5

MAC-then-Enc vs. Enc-then-MAC

Enck -enc (m, MACk -int (m))

vs.

Enck -enc (m), MACk -int (m)

vs.

Enck -enc (m), MACk -int (Enck -enc (m))

vs. Enck -enc (MACk -int (m))

• Cannot recover m

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-5

MAC-then-Enc vs. Enc-then-MAC

Enck -enc (m, MACk -int (m))

vs.

Enck -enc (m), MACk -int (m)

vs.

Enck -enc (m), MACk -int (Enck -enc (m))

vs. Enck -enc (MACk -int (m))

Enck -enc (MACk -int (m))

• Cannot recover m

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-5

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• “The encryption protects the MAC”

• Encryption does not provide any message authenticity/integrity!

• Example: A weak MAC cannot be “protected” by encrypting it

• CRC is not a MAC, OTP is perfect encryption

• OTPk (m, CRC(m)) does not provide any integrity

• Attacker can ⊕x to encrypted message and ⊕CRC(x) to the encrypted CRC to fix it

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-6

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• “The encryption protects the MAC”

“The encryption protects the MAC”

• Encryption does not provide any message authenticity/integrity!

• Example: A weak MAC cannot be “protected” by encrypting it

• CRC is not a MAC, OTP is perfect encryption

• OTPk (m, CRC(m)) does not provide any integrity

• Attacker can ⊕x to encrypted message and ⊕CRC(x) to the encrypted CRC to fix it

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-6

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• “The encryption protects the MAC”

“The encryption protects the MAC”

• Encryption does not provide any message authenticity/integrity!

• Example: A weak MAC cannot be “protected” by encrypting it

• CRC is not a MAC, OTP is perfect encryption

• OTPk (m, CRC(m)) does not provide any integrity

• Attacker can ⊕x to encrypted message and ⊕CRC(x) to the encrypted CRC to fix it

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-6

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• “The encryption protects the MAC”

“The encryption protects the MAC”

• Encryption does not provide any message authenticity/integrity!

• Example: A weak MAC cannot be “protected” by encrypting it

• CRC is not a MAC, OTP is perfect encryption

• OTPk (m, CRC(m)) does not provide any integrity

• Attacker can ⊕x to encrypted message and ⊕CRC(x) to the encrypted CRC to fix it

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-6

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• Horton principle:“Authenticate what you mean, not what you say ”
• “Authenticate the plaintext!”

• Do you really mean char *?

• Horton principle applies to application layer

• E.g., Signing a contract

• The secure channel transports chunks of bytes

• m1 = "<!--",
m2 = "I owe you $1000",
m3 = "-->"

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-7

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• Horton principle:“Authenticate what you mean, not what you say ”
• “Authenticate the plaintext!”

“Authenticate the plaintext!”

• Do you really mean char *?

• Horton principle applies to application layer

• E.g., Signing a contract

• The secure channel transports chunks of bytes

• m1 = "<!--",
m2 = "I owe you $1000",
m3 = "-->"

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-7

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• Horton principle:“Authenticate what you mean, not what you say ”
• “Authenticate the plaintext!”

“Authenticate the plaintext!”

• Do you really mean char *?

• Horton principle applies to application layer

• E.g., Signing a contract

• The secure channel transports chunks of bytes

• m1 = "<!--",
m2 = "I owe you $1000",
m3 = "-->"

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-7

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• Horton principle:“Authenticate what you mean, not what you say ”
• “Authenticate the plaintext!”

“Authenticate the plaintext!”

• Do you really mean char *?

• Horton principle applies to application layer

• E.g., Signing a contract

• The secure channel transports chunks of bytes

• m1 = "<!--",
m2 = "I owe you $1000",
m3 = "-->"

http://www.personalausweisportal.de/DE/
Buergerinnen-und-Buerger/Online-Ausweisen/
Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_
node.html

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-7

http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• Horton principle:“Authenticate what you mean, not what you say ”
• “Authenticate the plaintext!”

“Authenticate the plaintext!”

• Do you really mean char *?

• Horton principle applies to application layer

• E.g., Signing a contract

• The secure channel transports chunks of bytes

• m1 = "<!--",
m2 = "I owe you $1000",
m3 = "-->"

http://www.personalausweisportal.de/DE/
Buergerinnen-und-Buerger/Online-Ausweisen/
Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_
node.html

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-7

http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m, MACk -int (m)):
• Horton principle:“Authenticate what you mean, not what you say ”
• “Authenticate the plaintext!”

“Authenticate the plaintext!”

• Do you really mean char *?

• Horton principle applies to application layer

• E.g., Signing a contract

• The secure channel transports chunks of bytes out of con-
text

• m1 = "<!--",
m2 = "I owe you $1000",
m3 = "-->"

http://www.personalausweisportal.de/DE/
Buergerinnen-und-Buerger/Online-Ausweisen/
Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_
node.html

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-7

http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html
http://www.personalausweisportal.de/DE/Buergerinnen-und-Buerger/Online-Ausweisen/Das-brauche-ich/Kartenlesegeraete/Kartenlesegeraete_node.html

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m), MACk -int (m):
• Not better than Enck -enc (m, MACk -int (m))

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-8

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m), MACk -int (Enck -enc (m)):
• c ← Enck -enc (m), MACk -int (c)

• Considered secure

• Discard bogus messages before decryption

• Don’t waste CPU power

• Don’t generate error messages that might help an attacker

• Don’t touch non-authentic data!

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-9

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m), MACk -int (Enck -enc (m)):
• c ← Enck -enc (m), MACk -int (c)

• Considered secure

• Discard bogus messages before decryption

• Don’t waste CPU power

• Don’t generate error messages that might help an attacker

• Don’t touch non-authentic data!

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-9

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m), MACk -int (Enck -enc (m)):
• c ← Enck -enc (m), MACk -int (c)

• Considered secure

• Discard bogus messages before decryption

• Don’t waste CPU power

• Don’t generate error messages that might help an attacker

• Don’t touch non-authentic data!

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-9

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m), MACk -int (Enck -enc (m)):
• c ← Enck -enc (m), MACk -int (c)

• Considered secure

• Discard bogus messages before decryption
• Don’t waste CPU power

• Don’t generate error messages that might help an attacker

• Don’t touch non-authentic data!

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-9

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m), MACk -int (Enck -enc (m)):
• c ← Enck -enc (m), MACk -int (c)

• Considered secure

• Discard bogus messages before decryption
• Don’t waste CPU power

• Don’t generate error messages that might help an attacker

• Don’t touch non-authentic data!

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-9

MAC-then-Enc vs. Enc-then-MAC

• Enck -enc (m), MACk -int (Enck -enc (m)):
• c ← Enck -enc (m), MACk -int (c)

• Considered secure

• Discard bogus messages before decryption
• Don’t waste CPU power

• Don’t generate error messages that might help an attacker

• Don’t touch non-authentic data!

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-9

MAC-then-Enc vs. Enc-then-MAC
Examples

• Enck -enc (m, MACk -int (m))
• MAC then encrypt

• SSL← many SSL attacks are a result of this scheme

• Horton Principle

• Enck -enc (m), MACk -int (m)
• MAC & encrypt

• SSH

• Horton Principle

• Considered the weakest

• Enck -enc (m), MACk -int (Enck -enc (m))
• Encrypt then MAC

• IPSec (ESP), Signal (TextSecure ProtovolV2),
probably TLS 1.3 [RCF7366]

• Considered the most secure

Chapter 8: Secure Channel – MAC-then-Enc vs. Enc-then-MAC 8-10

Chapter 8: Secure Channel

Secure Channel

MAC-then-Enc vs. Enc-then-MAC

Secure Channel Implementation

Secure Channel (ESP) in the OpenBSD Kernel

Authenticated Encryption With Associated Data

AEAD & Secure Channel (ESP) in the Linux Kernel

Attacks against a Secure Channel (Stream Cipher)

Attacks against a Secure Channel (Padding oracle)

Chapter 8: Secure Channel 8-11

Secure Channel Implementation

• Our Secure Channel Implementation:
• We need

• Message numbering

• Authentication

• Encryption

• Our Toy Implementation
• Message numbering: n (next slide)

• Authentication: HMAC-SHA-256

MACk -int (n ‖ IV ‖ c)

• Encryption: AES-128-CTR

c ← ENCk -enc (IV , m)

• keys for each purpose

Chapter 8: Secure Channel – Secure Channel Implementation 8-12

Secure Channel Implementation

• Message Numbering:
• n ∈ N

• Increased monotonically for each valid message

• n must be unique for every message

• Remember last message nlast and only accept n > nlast

• Detect replays

• Correct order

• Detect lost messages

• Number overflow→ rekeying

Chapter 8: Secure Channel – Secure Channel Implementation 8-13

Secure Channel Implementation

• Message Numbering:
• n ∈ N

• Increased monotonically for each valid message

• n must be unique for every message

• Remember last message nlast and only accept n > nlast

• Detect replays

• Correct order

• Detect lost messages

• Number overflow→ rekeying

Chapter 8: Secure Channel – Secure Channel Implementation 8-13

Secure Channel Implementation

• Message Numbering:
• n ∈ N

• Increased monotonically for each valid message

• n must be unique for every message

• Remember last message nlast and only accept n > nlast

• Detect replays

• Correct order

• Detect lost messages

• Number overflow→ rekeying

Chapter 8: Secure Channel – Secure Channel Implementation 8-13

Secure Channel Implementation
• Initialize (at Alice):

Output: 128bit key

def KDF(k):

TODO: There are better key derivation functions

Assumes: random oracle property of SHA1

return SHA1(k)

Initialize global variables (keys and message number)

def init_globals(k):

global K_send_enc , K_recv_enc , K_send_int , K_recv_int , n_send , n_recv ,

used_nonces

K_send_enc = KDF(k || "Enc Alice to Bob")

K_recv_enc = KDF(k || "Enc Bob to Alice")

K_send_int = KDF(k || "MAC Alice to Bob")

K_recv_int = KDF(k || "MAC Bob to Alice")

n_send = 1

n_recv = 0

used_nonces = {}

• Generate one key for each purpose

• Where · ‖ · means string/byte concatenation
Chapter 8: Secure Channel – Secure Channel Implementation 8-14

Secure Channel Implementation

• AES-128-CTR Mode needs IV:
• ctr i = IV ‖ i

• ctri is of length 128 bit: We chose 120 bit IV and 8 bit i

m0 c0

Enck

IV ‖ 0

m1 c1

Enck

IV ‖ 1

...

...

m255 c255

Enck

IV ‖ 255

• Max message size per IV: 28 · 128 = 32768 bit = 4096 Bytes

• For i ∈ {0 ... 254}: ctr i+1 = ctr i + 1

Chapter 8: Secure Channel – Secure Channel Implementation 8-15

Secure Channel Implementation

• Nonces as IV for AES-CTR:

used_nonces = {}

Output: A fresh 120bit nonce

def nonce():

global used_nonces

n = random_bits (120)

if n not in used_nonces:

used_nonces.add(n)

return n

else:

TODO: may not terminate if no unused nonces are left

return nonce()

• We want a fresh IV→ remember used nonces

• We are super paranoid:
• Random nonces

• A counter would suffice

Chapter 8: Secure Channel – Secure Channel Implementation 8-16

Secure Channel Implementation

• Sending a Message:

def send(m):

global n_send , K_send_enc , K_send_int

if n_send >= MAX_INT:

return ERROR("MSG Number overflow , needs rekeying")

if len(m) > 4096:

return ERROR("MSG too large , needs fragmentation")

IV = nonce()

c = ENC -AES -128-CTR(K_send_enc , IV, m)

t = HMAC -SHA -256(K_send_int , n_send || IV || c)

socket_send(n_send || IV || c || t)

n_send = n_send + 1

Chapter 8: Secure Channel – Secure Channel Implementation 8-17

Secure Channel Implementation

• Verifying a MAC:

def verify(k, msg , t):

return HMAC -SHA -256(k, msg) == t

Chapter 8: Secure Channel – Secure Channel Implementation 8-18

Secure Channel Implementation

• Verifying a MAC correctly:

def verify(k, msg , t):

return timingsafe_bcmp(HMAC -SHA -256(k, msg), t, 32)

OpenBSD/sys/lib/libkern/timingsafe_bcmp.c

int timingsafe_bcmp(const void *b1, const void *b2, size_t n)

{

const unsigned char *p1 = b1, *p2 = b2;

int ret = 0;

for (; n > 0; n--)

ret |= *p1++ ^ *p2++;

return (ret != 0);

}

The timingsafe_bcmp() and timingsafe_memcmp() functions lexicographically compare the first len bytes (each

interpreted as an unsigned char) pointed to by b1 and b2. Additionally, their running times are independent

of the byte sequences compared, making them safe to use for comparing secret values such as cryptographic

MACs. In contrast, bcmp(3) and memcmp(3) may short-circuit after finding the first differing byte.

Chapter 8: Secure Channel – Secure Channel Implementation 8-19

Secure Channel Implementation

• Receiving a Message:

def receive(msg):

global n_recv , K_recv_int , K_recv_enc

if n_recv + 1 >= MAX_INT:

return ERROR("MSG Number overflow , need rekeying")

n, IV, c, t = parse(msg)

if not verify(K_recv_int , n || IV || c, t):

return ERROR("MAC verification failed")

if n <= n_recv:

return ERROR("Received old message")

if n != n_recv + 1:

print "lost %d messages" % (n - (n_recv + 1))

n_recv = n

m = DEC -AES -128-CTR(K_recv_enc , IV, c)

return m
Chapter 8: Secure Channel – Secure Channel Implementation 8-20

Chapter 8: Secure Channel

Secure Channel

MAC-then-Enc vs. Enc-then-MAC

Secure Channel Implementation

Secure Channel (ESP) in the OpenBSD Kernel

Authenticated Encryption With Associated Data

AEAD & Secure Channel (ESP) in the Linux Kernel

Attacks against a Secure Channel (Stream Cipher)

Attacks against a Secure Channel (Padding oracle)

Chapter 8: Secure Channel 8-21

Secure Channel (ESP) in the OpenBSD Kernel

IPSec ESP in the
OpenBSD Kernel

Chapter 8: Secure Channel – Secure Channel (ESP) in the OpenBSD Kernel 8-22

Secure Channel (ESP) in the OpenBSD Kernel
• ESP Input Processing:
sys/netinet/ip_esp.c OpenBSD 5.8

/*

* ESP input processing , called (eventually) through the protocol switch.

*/

int

esp_input(struct mbuf *m, struct tdb *tdb , int skip , int protoff)

{

struct auth_hash *esph = (struct auth_hash *) tdb ->tdb_authalgxform;

struct enc_xform *espx = (struct enc_xform *) tdb ->tdb_encalgxform;

struct cryptodesc *crde = NULL , *crda = NULL;

struct cryptop *crp;

struct tdb_crypto *tc;

int plen , alen , hlen;

u_int32_t btsx , esn;

/* Determine the ESP header length */

hlen = 2 * sizeof(u_int32_t) + tdb ->tdb_ivlen; /* "new" ESP */

alen = esph ? esph ->authsize : 0;

plen = m->m_pkthdr.len - (skip + hlen + alen);

if (plen <= 0) {

DPRINTF (("esp_input: invalid payload length\n"));

espstat.esps_badilen ++;

m_freem(m);

return EINVAL;

}

• Both encryption and authentication are optional in ESP

Chapter 8: Secure Channel – Secure Channel (ESP) in the OpenBSD Kernel 8-23

Secure Channel (ESP) in the OpenBSD Kernel

if (espx) {

/*

* Verify payload length is multiple of encryption algorithm

* block size.

*/

if (plen & (espx ->blocksize - 1)) {

DPRINTF (("esp_input (): payload of %d octets "

"not a multiple of %d octets , SA %s/%08x\n",

plen , espx ->blocksize , ipsp_address (&tdb ->tdb_dst ,

buf , sizeof(buf)), ntohl(tdb ->tdb_spi)));

espstat.esps_badilen ++;

m_freem(m);

return EINVAL;

}

}

• if encryption is to be applied

Chapter 8: Secure Channel – Secure Channel (ESP) in the OpenBSD Kernel 8-24

Secure Channel (ESP) in the OpenBSD Kernel
/* Replay window checking , if appropriate -- no value commitment. */

if (tdb ->tdb_wnd > 0) {

m_copydata(m, skip + sizeof(u_int32_t), sizeof(u_int32_t), (unsigned char *) &btsx);

btsx = ntohl(btsx);

switch (checkreplaywindow(tdb , btsx , &esn , 0)) {

case 0: /* All's well */

break;

case 1:

m_freem(m);

DPRINTF (("esp_input (): replay counter wrapped for SA %s/%08x\n",

ipsp_address (&tdb ->tdb_dst , buf , sizeof(buf)), ntohl(tdb ->tdb_spi)));

espstat.esps_wrap ++;

return EACCES;

case 2:

m_freem(m);

DPRINTF (("esp_input (): old packet received in SA %s/%08x\n",

ipsp_address (&tdb ->tdb_dst , buf , sizeof(buf)), ntohl(tdb ->tdb_spi)));

espstat.esps_replay ++;

return EACCES;

case 3:

m_freem(m);

DPRINTF (("esp_input (): duplicate packet received in SA %s/%08x\n",

ipsp_address (&tdb ->tdb_dst , buf , sizeof(buf)), ntohl(tdb ->tdb_spi)));

espstat.esps_replay ++;

return EACCES;

default:

m_freem(m);

DPRINTF (("esp_input (): bogus value from checkreplaywindow () in SA %s/%08x\n",

ipsp_address (&tdb ->tdb_dst , buf , sizeof(buf)), ntohl(tdb ->tdb_spi)));

espstat.esps_replay ++;

return EACCES;

}

}

int checkreplaywindow(struct tdb *tdb, u_int32_t seq, u_int32_t *seqh, int commit) i.e. do not update replay window

Chapter 8: Secure Channel – Secure Channel (ESP) in the OpenBSD Kernel 8-25

Secure Channel (ESP) in the OpenBSD Kernel
/* Update the counters */

tdb ->tdb_cur_bytes += m->m_pkthdr.len - skip - hlen - alen;

espstat.esps_ibytes += m->m_pkthdr.len - skip - hlen - alen;

/* Hard expiration */

if ((tdb ->tdb_flags & TDBF_BYTES) &&

(tdb ->tdb_cur_bytes >= tdb ->tdb_exp_bytes)) {

pfkeyv2_expire(tdb , SADB_EXT_LIFETIME_HARD);

tdb_delete(tdb);

m_freem(m);

return ENXIO;

}

/* Notify on soft expiration */

if ((tdb ->tdb_flags & TDBF_SOFT_BYTES) &&

(tdb ->tdb_cur_bytes >= tdb ->tdb_soft_bytes)) {

pfkeyv2_expire(tdb , SADB_EXT_LIFETIME_SOFT);

tdb ->tdb_flags &= ~TDBF_SOFT_BYTES; /* Turn off checking */

}

/* Get crypto descriptors */

crp = crypto_getreq(esph && espx ? 2 : 1);

if (crp == NULL) {

m_freem(m);

DPRINTF (("esp_input (): failed to acquire crypto descriptors\n"));

espstat.esps_crypto ++;

return ENOBUFS;

}

...

• Keys may expire after certain number of bytes

• Note: packet might still be bogus, replay window not updated

Chapter 8: Secure Channel – Secure Channel (ESP) in the OpenBSD Kernel 8-26

Secure Channel (ESP) in the OpenBSD Kernel
if (esph) {

crda = crp ->crp_desc;

crde = crda ->crd_next;

/* Authentication descriptor */

crda ->crd_skip = skip;

crda ->crd_inject = m->m_pkthdr.len - alen;

crda ->crd_alg = esph ->type;

crda ->crd_key = tdb ->tdb_amxkey;

crda ->crd_klen = tdb ->tdb_amxkeylen * 8;

if ((tdb ->tdb_wnd > 0) && (tdb ->tdb_flags & TDBF_ESN)) {

esn = htonl(esn);

bcopy(&esn , crda ->crd_esn , 4);

crda ->crd_flags |= CRD_F_ESN;

}

if (espx && espx ->type == CRYPTO_AES_GCM_16)

crda ->crd_len = hlen - tdb ->tdb_ivlen;

else

crda ->crd_len = m->m_pkthdr.len - (skip + alen);

/* Copy the authenticator */

m_copydata(m, m->m_pkthdr.len - alen , alen , (caddr_t)(tc + 1));

} else

crde = crp ->crp_desc;

/* Crypto operation descriptor */

...

• if authentication is to be applied

Chapter 8: Secure Channel – Secure Channel (ESP) in the OpenBSD Kernel 8-27

Secure Channel (ESP) in the OpenBSD Kernel

/* Decryption descriptor */

if (espx) {

crde ->crd_skip = skip + hlen;

crde ->crd_inject = skip + hlen - tdb ->tdb_ivlen;

crde ->crd_alg = espx ->type;

crde ->crd_key = tdb ->tdb_emxkey;

crde ->crd_klen = tdb ->tdb_emxkeylen * 8;

/* XXX Rounds ? */

if (crde ->crd_alg == CRYPTO_AES_GMAC)

crde ->crd_len = 0;

else

crde ->crd_len = m->m_pkthdr.len - (skip + hlen + alen);

}

• if encryption is to be applied

Chapter 8: Secure Channel – Secure Channel (ESP) in the OpenBSD Kernel 8-28

Secure Channel (ESP) in the OpenBSD Kernel

return crypto_dispatch(crp);

}

• Dispatch to crypto driver (similar to Linux)

• A callback will be called once the crypto was done

Chapter 8: Secure Channel – Secure Channel (ESP) in the OpenBSD Kernel 8-29

Secure Channel (ESP) in the OpenBSD Kernel
/*

* ESP input callback , called directly by the crypto driver.

*/

int

esp_input_cb(struct cryptop *crp)

{

...

/* If authentication was performed , check now. */

if (esph != NULL) {

...

/* Verify authenticator */

if (timingsafe_bcmp(ptr , aalg , esph ->authsize)) {

free(tc, M_XDATA , 0);

DPRINTF (("esp_input_cb (): authentication failed for packet in SA %s/%08x\n",

ipsp_address (&tdb ->tdb_dst , buf , sizeof(buf)), ntohl(tdb ->tdb_spi)));

espstat.esps_badauth ++;

error = EACCES;

goto baddone;

}

/* Remove trailing authenticator */

m_adj(m, -(esph ->authsize));

}

free(tc, M_XDATA , 0);

/* Replay window checking , if appropriate */

...

/* Verify pad length */

...

/* Verify correct decryption by checking the last padding bytes */

...

}

• Check if everything was correct (in the right order)
• update replay window

Chapter 8: Secure Channel – Secure Channel (ESP) in the OpenBSD Kernel 8-30

Chapter 8: Secure Channel

Secure Channel

MAC-then-Enc vs. Enc-then-MAC

Secure Channel Implementation

Secure Channel (ESP) in the OpenBSD Kernel

Authenticated Encryption With Associated Data

AEAD & Secure Channel (ESP) in the Linux Kernel

Attacks against a Secure Channel (Stream Cipher)

Attacks against a Secure Channel (Padding oracle)

Chapter 8: Secure Channel 8-31

Authenticated Encryption With Associated Data

• Authenticated Encryption With Associated Data (AEAD):
• Authenticated encryption: Encrypt then MAC

• Associated Data: Additional non-encrypted data but authenticated

• Example AD: IV, information necessary for message routing, . . .

• Special AEAD Algorithms: only need one pass over the data
• Encrypt and MAC usually requires two passes

• Examples
• Offset Codebook Mode (OCB)
• Galois/Counter Mode (GCM)

Chapter 8: Secure Channel – Authenticated Encryption With Associated Data 8-32

Offset Codebook Mode (OCB)

• Offset Codebook Mode
• Authenticated Encryption Mode
• Proposed 2001 [OCB1]
• Standardized May 2014 [RFC 7253]
• Encryption

• Inspired by ECB with block-dependent offsets (avoids ECB problems!)

• Associated Data A
• A is not encrypted but authenticated
• For example: Unencrypted header data

• MAC
• Checksum = XOR over plaintext, length- and key-dependent variables
• MAC = (Encryption of checksum with shared key k) XOR (hash(k,A))

• Requires only one key K for encryption and authentication
• Requires a fresh nonce every time

Chapter 8: Secure Channel – Authenticated Encryption With Associated Data 8-33

Offset Codebook Mode (OCB)

• Let double be multiplication by the variable in the OCB Galois Filed

• Variables depending on the key: L?, L$, L0, L1, L2, ...
• L? = EncK (0)
• L$ = double(L?)
• L0 = double(L$)
• Li = double(Li−1)

• Let ntz be number of trailing zeros (zero bits at the end)

• Usage of the L’s
• L$ → MAC
• L? → last block
• Lntz(i) → intermediate blocks

• Note: Lntz(i) is used
• Only few Li are needed (for a fixed K)
• They can be pre-computed and stored in a Lookup table

Chapter 8: Secure Channel – Authenticated Encryption With Associated Data 8-34

Offset Codebook Mode (OCB)

Pi

Ci

Enc

Offseti-1

Lntz(i)

Offseti+

+

+

k

Checksumi-1 + Checksumi

…

Pi+1

Ci+1

Enc

Lntz(i+1)

Offseti+1+

+

+

k

+ Checksumi+1

Chapter 8: Secure Channel – Authenticated Encryption With Associated Data 8-35

OCB Initialization

• Offset0 depends on the key and the nonce

• “It is crucial that, as one encrypts, one does not repeat a nonce.” [RFC 7253, §5.1]

• Nonce may not be random, e.g. a counter works fine

• A new nonce for every authenticated encryption API call is needed!

• Details about the initialization: http://www.cs.ucdavis.edu/ rogaway/ocb/ocb-faq.htm

Chapter 8: Secure Channel – Authenticated Encryption With Associated Data 8-36

OCB Last Block and MAC

Offsetn-1

Checksumn-1

P★

C★

Enc

L★

Offset★+

+ +

k

+ Checksum★

Pad
ding

Enck

+

L$

MAC

hashA

Chapter 8: Secure Channel – Authenticated Encryption With Associated Data 8-37

Offset Codebook Mode (OCB)

• Question: XOR plaintext and then encrypt, that sounds like the weak MAC example
from Chapter 2.2. Why is OCB more secure than the easy-to-break example?

• “OCB enjoys provable security: the mode of operation is secure assuming that the
underlying blockcipher is secure. As with most modes of operation, security degrades
as the number of blocks processed gets large” [RFC 7253]

Chapter 8: Secure Channel – Authenticated Encryption With Associated Data 8-38

Offset Codebook Mode (OCB)

• Question: XOR plaintext and then encrypt, that sounds like the weak MAC example
from Chapter 2.2. Why is OCB more secure than the easy-to-break example?

• “OCB enjoys provable security: the mode of operation is secure assuming that the
underlying blockcipher is secure. As with most modes of operation, security degrades
as the number of blocks processed gets large” [RFC 7253]

Chapter 8: Secure Channel – Authenticated Encryption With Associated Data 8-38

Galois/Counter mode (GCM)

• Galois/Counter Mode (GCM)
• Developed by John Viega and David A. McGrew
• Standardized by NIST in 2007, IETF standards for cipher suites with AES-GCM for TLS

(SSL) and IPSec exist.
• Follows the Encrypt-then-MAC concept
• Combines concept of Counter Mode for encryption with Galois Field Multiplication to com-

pute MAC on the ciphertext
• GF(2128) based on polynomial x128 + x7 + x2 + x + 1

• Definitions
• H is Enc(k,0)
• Auth Data is data not to be encrypted. GCM generates check value by XOR and GF

multiplication with H for each block.
• For the MAC, this process continues on the ciphertext and a length field in the end.

Chapter 8: Secure Channel – Authenticated Encryption With Associated Data 8-39

Galois/Counter mode (GCM)

• Galois/Counter Mode (GCM)
• Developed by John Viega and David A. McGrew
• Standardized by NIST in 2007, IETF standards for cipher suites with AES-GCM for TLS

(SSL) and IPSec exist.
• Follows the Encrypt-then-MAC concept
• Combines concept of Counter Mode for encryption with Galois Field Multiplication to com-

pute MAC on the ciphertext
• GF(2128) based on polynomial x128 + x7 + x2 + x + 1

• Definitions
• H is Enc(k,0)
• Auth Data is data not to be encrypted. GCM generates check value by XOR and GF

multiplication with H for each block.
• For the MAC, this process continues on the ciphertext and a length field in the end.

Chapter 8: Secure Channel – Authenticated Encryption With Associated Data 8-39

Galois/Counter mode (GCM)

1

• Counter 0 = IV, Auth Tag = MAC

1 Image Source = https://en.wikipedia.org/wiki/Galois/Counter_Mode

Chapter 8: Secure Channel – Authenticated Encryption With Associated Data 8-40

https://en.wikipedia.org/wiki/Galois/Counter_Mode

Galois Field Multiplication

• In a Galois Field we consider the bitstring to represent a polynomial.
• E.g. 1011 = x3 + x + 1

• As a consequence Galois Field Multiplication is based on polynomial multiplication
modulus the polynomial of the field.

• Example: In GF(2128) based on polynomial g(x) = x128 + x7 + x2 + x + 1
• P(x) = x127 + x7

• Q(x) = x5 + 1
• P(x) ∗ Q

′
(x) = x132 + x127 + x12 + x7

• To compute the modulus, we have to compute a polynomial division P(x) ∗ Q(x)/g(x).
• We can see that x4 ∗ g(x) removes the x132, so P(x) ∗Q(x)− x4 ∗ g(x) = x127 + x12 + x11 +

x7 + x6 + x5 + x4

• Since this polynomial fits into the 128 bit, this is the remainder of the division, thus the
result, in bits: 1000. . . 01100011110000.

Chapter 8: Secure Channel – Authenticated Encryption With Associated Data 8-41

Galois Field Multiplication

• In a Galois Field we consider the bitstring to represent a polynomial.
• E.g. 1011 = x3 + x + 1

• As a consequence Galois Field Multiplication is based on polynomial multiplication
modulus the polynomial of the field.

• Example: In GF(2128) based on polynomial g(x) = x128 + x7 + x2 + x + 1
• P(x) = x127 + x7

• Q(x) = x5 + 1
• P(x) ∗ Q

′
(x) = x132 + x127 + x12 + x7

• To compute the modulus, we have to compute a polynomial division P(x) ∗ Q(x)/g(x).
• We can see that x4 ∗ g(x) removes the x132, so P(x) ∗Q(x)− x4 ∗ g(x) = x127 + x12 + x11 +

x7 + x6 + x5 + x4

• Since this polynomial fits into the 128 bit, this is the remainder of the division, thus the
result, in bits: 1000. . . 01100011110000.

Chapter 8: Secure Channel – Authenticated Encryption With Associated Data 8-41

Chapter 8: Secure Channel

Secure Channel

MAC-then-Enc vs. Enc-then-MAC

Secure Channel Implementation

Secure Channel (ESP) in the OpenBSD Kernel

Authenticated Encryption With Associated Data

AEAD & Secure Channel (ESP) in the Linux Kernel

Attacks against a Secure Channel (Stream Cipher)

Attacks against a Secure Channel (Padding oracle)

Chapter 8: Secure Channel 8-42

AEAD & Secure Channel (ESP) in the Linux Kernel

AEAD & ESP in the
Linux Kernel

Linux 4.3 (stable, vanilla)

Chapter 8: Secure Channel – AEAD & Secure Channel (ESP) in the Linux Kernel 8-43

AEAD & Secure Channel (ESP) in the Linux Kernel
• Authenticated Encryption With Associated Data (AEAD):
include/crypto/aead.h

/**

* DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API

*

* The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD

* (listed as type "aead" in /proc/crypto)

*

* The most prominent examples for this type of encryption is GCM and CCM.

* However , the kernel supports other types of AEAD ciphers which are defined

* with the following cipher string:

*

* authenc(keyed message digest , block cipher)

*

* For example: authenc(hmac(sha256), cbc(aes))

• AEAD API

• AEAD algorithm or combination of Enc and MAC

Chapter 8: Secure Channel – AEAD & Secure Channel (ESP) in the Linux Kernel 8-44

AEAD & Secure Channel (ESP) in the Linux Kernel
• Authenticated Encryption With Associated Data (AEAD):
include/crypto/aead.h

/**

* crypto_aead_encrypt () - encrypt plaintext

* @req: reference to the aead_request handle that holds all information

* needed to perform the cipher operation

*

* Encrypt plaintext data using the aead_request handle. That data structure

* and how it is filled with data is discussed with the aead_request_*

* functions.

*

* IMPORTANT NOTE The encryption operation creates the authentication data /

* tag. That data is concatenated with the created ciphertext.

* The ciphertext memory size is therefore the given number of

* block cipher blocks + the size defined by the

* crypto_aead_setauthsize invocation. The caller must ensure

* that sufficient memory is available for the ciphertext and

* the authentication tag.

*

* Return: 0 if the cipher operation was successful; < 0 if an error occurred

*/

static inline int crypto_aead_encrypt(struct aead_request *req)

{

return crypto_aead_alg(crypto_aead_reqtfm(req))->encrypt(req);

}

• encrypt and generate authentication tag

Chapter 8: Secure Channel – AEAD & Secure Channel (ESP) in the Linux Kernel 8-45

AEAD & Secure Channel (ESP) in the Linux Kernel
• Authenticated Encryption With Associated Data (AEAD):
include/crypto/aead.h

/**

* crypto_aead_decrypt () - decrypt ciphertext

* @req: reference to the ablkcipher_request handle that holds all information

* needed to perform the cipher operation

*

* Decrypt ciphertext data using the aead_request handle. That data structure

* and how it is filled with data is discussed with the aead_request_*

* functions.

*

* IMPORTANT NOTE The caller must concatenate the ciphertext followed by the

* authentication data / tag. That authentication data / tag

* must have the size defined by the crypto_aead_setauthsize

* invocation.

*

*

* Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD

* cipher operation performs the authentication of the data during the

* decryption operation. Therefore , the function returns this error if

* the authentication of the ciphertext was unsuccessful (i.e. the

* integrity of the ciphertext or the associated data was violated);

* < 0 if an error occurred.

*/

static inline int crypto_aead_decrypt(struct aead_request *req)

...

• check authentication tag and decrypt

Chapter 8: Secure Channel – AEAD & Secure Channel (ESP) in the Linux Kernel 8-46

AEAD & Secure Channel (ESP) in the Linux Kernel
• Authenticated Encryption With Associated Data (AEAD):
include/crypto/aead.h

/**

* aead_request_set_crypt - set data buffers

* @req: request handle

* @src: source scatter / gather list

* @dst: destination scatter / gather list

* @cryptlen: number of bytes to process from @src

* @iv: IV for the cipher operation which must comply with the IV size defined

* by crypto_aead_ivsize ()

*

* Setting the source data and destination data scatter / gather lists which

* hold the associated data concatenated with the plaintext or ciphertext. See

* below for the authentication tag.

*

* For encryption , the source is treated as the plaintext and the

* destination is the ciphertext. For a decryption operation , the use is

* reversed - the source is the ciphertext and the destination is the plaintext.

*

* For both src/dst the layout is associated data , plain/cipher text ,

* authentication tag.

*

* The content of the AD in the destination buffer after processing

* will either be untouched , or it will contain a copy of the AD

* from the source buffer. In order to ensure that it always has

* a copy of the AD, the user must copy the AD over either before

* or after processing. Of course this is not relevant if the user

* is doing in-place processing where src == dst.

*

• constructing API request: encrypt this
Chapter 8: Secure Channel – AEAD & Secure Channel (ESP) in the Linux Kernel 8-47

AEAD & Secure Channel (ESP) in the Linux Kernel

/* IMPORTANT NOTE AEAD requires an authentication tag (MAC). For decryption ,

* the caller must concatenate the ciphertext followed by the

* authentication tag and provide the entire data stream to the

* decryption operation (i.e. the data length used for the

* initialization of the scatterlist and the data length for the

* decryption operation is identical). For encryption , however ,

* the authentication tag is created while encrypting the data.

* The destination buffer must hold sufficient space for the

* ciphertext and the authentication tag while the encryption

* invocation must only point to the plaintext data size. The

* following code snippet illustrates the memory usage

* buffer = kmalloc(ptbuflen + (enc ? authsize : 0));

* sg_init_one (&sg, buffer , ptbuflen + (enc ? authsize : 0));

* aead_request_set_crypt(req , &sg, &sg, ptbuflen , iv);

*/

static inline void aead_request_set_crypt(struct aead_request *req ,

struct scatterlist *src ,

struct scatterlist *dst ,

unsigned int cryptlen , u8 *iv)

{

req ->src = src;

req ->dst = dst;

req ->cryptlen = cryptlen;

req ->iv = iv;

}

• Never forget about integrity/authenticity

Chapter 8: Secure Channel – AEAD & Secure Channel (ESP) in the Linux Kernel 8-48

AEAD & Secure Channel (ESP) in the Linux Kernel

/**

* aead_request_set_ad - set associated data information

* @req: request handle

* @assoclen: number of bytes in associated data

*

* Setting the AD information. This function sets the length of

* the associated data.

*/

static inline void aead_request_set_ad(struct aead_request *req ,

unsigned int assoclen)

{

req ->assoclen = assoclen;

}

• constructing API request: check integrity of this

Chapter 8: Secure Channel – AEAD & Secure Channel (ESP) in the Linux Kernel 8-49

AEAD & Secure Channel (ESP) in the Linux Kernel

• ESP Implementation for IPv4:
net/ipv4/esp4.c

• XFRM module

static const struct xfrm_type esp_type =

{

.description = "ESP4",

.owner = THIS_MODULE ,

.proto = IPPROTO_ESP ,

.flags = XFRM_TYPE_REPLAY_PROT ,

.init_state = esp_init_state ,

.destructor = esp_destroy ,

.get_mtu = esp4_get_mtu ,

.input = esp_input ,

.output = esp_output

};

static struct xfrm4_protocol esp4_protocol = {

.handler = xfrm4_rcv ,

.input_handler = xfrm_input ,

.cb_handler = esp4_rcv_cb ,

.err_handler = esp4_err ,

.priority = 0,

};

• Flags: XFRM will check the sequence number

Chapter 8: Secure Channel – AEAD & Secure Channel (ESP) in the Linux Kernel 8-50

AEAD & Secure Channel (ESP) in the Linux Kernel

• An ESP Header Definition:
include/uapi/linux/ip.h

struct ip_esp_hdr {

__be32 spi;

__be32 seq_no; /* Sequence number */

__u8 enc_data[0]; /* Variable len but >=8. Mind the 64 bit alignment! */

};

• spi: Security Parameter Index, needed to associate packet

• enc_data: data of arbitrary length

• Just the header, the MAC/authenticator will be at the end of the packet (not defined
in the struct)

Chapter 8: Secure Channel – AEAD & Secure Channel (ESP) in the Linux Kernel 8-51

AEAD & Secure Channel (ESP) in the Linux Kernel

• ESP Input Processing:
net/ipv4/esp4.c

static int esp_input(struct xfrm_state *x, struct sk_buff *skb)

{

struct ip_esp_hdr *esph;

struct crypto_aead *aead = x->data;

struct aead_request *req;

int ivlen = crypto_aead_ivsize(aead);

int elen = skb ->len - sizeof (*esph) - ivlen;

int assoclen;

...

assoclen = sizeof (*esph);

...

aead_request_set_callback(req , 0, esp_input_done , skb);

...

aead_request_set_crypt(req , sg, sg, elen + ivlen , iv);

aead_request_set_ad(req , assoclen);

err = crypto_aead_decrypt(req);

...

return err;

}

• aead_request_set_callback: call this function when done
• add to AEAD request: decrypt the payload and verify the associated data (esp hdr)
• execute request

Chapter 8: Secure Channel – AEAD & Secure Channel (ESP) in the Linux Kernel 8-52

Chapter 8: Secure Channel

Secure Channel

MAC-then-Enc vs. Enc-then-MAC

Secure Channel Implementation

Secure Channel (ESP) in the OpenBSD Kernel

Authenticated Encryption With Associated Data

AEAD & Secure Channel (ESP) in the Linux Kernel

Attacks against a Secure Channel (Stream Cipher)

Attacks against a Secure Channel (Padding oracle)

Chapter 8: Secure Channel 8-53

Attacks against a Secure Channel (Stream Cipher)

• Re-Use of Initialization Vector (IV):

IV

k
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1

xor
P1 = 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0
C1 = 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1

• Then some time later the same IV is used again:

IV

k
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1

xor
P2 = 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1
C2 = 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0

Chapter 8: Secure Channel – Attacks against a Secure Channel (Stream Cipher) 8-54

Attacks against a Secure Channel (Stream Cipher)

• Re-Use of Initialization Vector (IV):

IV

k
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1

xor
P1 = 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0
C1 = 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1

• Then some time later the same IV is used again:

IV

k
1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1

xor
P2 = 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1
C2 = 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0

Chapter 8: Secure Channel – Attacks against a Secure Channel (Stream Cipher) 8-54

Attacks against a Secure Channel (Stream Cipher)

• Re-Use of Initialization Vector (IV) continued:

C1 = 1 0 0 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1
C2 = 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0

C1 + C2 = 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1
== (→P1+P2=C1+C2)

P1 + P2 = 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1
P1 = 0 0 1 0 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0
P2 = 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1

• As we see from the example, the attacker can computer C1+C2 because he observes
C1 and C2, but that means he knows also P1+P2.

• Known Plaintext (e.g. P1)→ attacker can compute other plaintext

• Statistical properties of plaintext can be used if plaintext is not random-looking. That
means if entropy of P1+P2 is low.

Chapter 8: Secure Channel – Attacks against a Secure Channel (Stream Cipher) 8-55

Chapter 8: Secure Channel

Secure Channel

MAC-then-Enc vs. Enc-then-MAC

Secure Channel Implementation

Secure Channel (ESP) in the OpenBSD Kernel

Authenticated Encryption With Associated Data

AEAD & Secure Channel (ESP) in the Linux Kernel

Attacks against a Secure Channel (Stream Cipher)

Attacks against a Secure Channel (Padding oracle)

Chapter 8: Secure Channel 8-56

Guessing a secret (revisited)

• Passwords
• N: size of alphabet (number of different characters)
• L: length of password in characters

• Complexity of guessing a randomly-generated password / secret
• The assumption is, we generate a password and then we test it.
→ O(NL)

• Complexity of guessing a randomly-generated password character by character
• The assumption is that we can check each character individually for correctness.
• For each character it is N/2 (avg) and N (worst case)
• So, overall L ∗ N/2 (avg)

• In the subsequent slides we will show an attack that reduces the decryption of a
blockcipher in CBC mode to byte-wise decryption (under special assumptions).

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-57

MAC-then-Encrypt-Issues

P MAC
Ciphertext

• Operation
• P and MAC are encrypted and hidden in the ciphertext.
• Receiver

• Decrypts P
• Decrypts MAC
• Computes and checks MAC→MAC error or success

• Consequence
• MAC does not protect the ciphertext.
• Integrity check can only be done once everything is decrypted.
• As a consequence, receiver will detect malicious messages at the end of the secure chan-

nel processing and not earlier.
• But is that more than a performance issue? Well, yes.

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-58

MAC-then-Encrypt-Issues

P MAC
Ciphertext

• Operation
• P and MAC are encrypted and hidden in the ciphertext.
• Receiver

• Decrypts P
• Decrypts MAC
• Computes and checks MAC→MAC error or success

• Consequence
• MAC does not protect the ciphertext.
• Integrity check can only be done once everything is decrypted.
• As a consequence, receiver will detect malicious messages at the end of the secure chan-

nel processing and not earlier.
• But is that more than a performance issue? Well, yes.

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-58

MAC-then-Encode-then-Encrypt

• If we use a block cipher, we have to ensure that the message encoding fits to the
blocksize of the cipher.

• Encode-then-MAC-then-Encrypt:
P Pad MAC

Ciphertext

• Format P so that with the MAC added the encryption sees the right size.
• Needs that we know the size of the MAC and blocksize of cipher when

generating P | Padding.

• MAC-then-Encode-then-Encrypt:
P MAC Pad

Ciphertext

• Used in TLS/SSL
• Here, we add the MAC first and then üad the P | MAC to the correct size.
• How do we know what is padding and what not? Padding in TLS/SSL:

• If size of padding is 1 byte, the padding is 1.
• If size of padding is 2 bytes, the padding is 2 2.
• If size of padding is 3 bytes, the padding is 3 3 3.
• . . .

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-59

MAC-then-Encode-then-Encrypt

• If we use a block cipher, we have to ensure that the message encoding fits to the
blocksize of the cipher.

• Encode-then-MAC-then-Encrypt:
P Pad MAC

Ciphertext

• Format P so that with the MAC added the encryption sees the right size.
• Needs that we know the size of the MAC and blocksize of cipher when

generating P | Padding.

• MAC-then-Encode-then-Encrypt:
P MAC Pad

Ciphertext

• Used in TLS/SSL
• Here, we add the MAC first and then üad the P | MAC to the correct size.
• How do we know what is padding and what not? Padding in TLS/SSL:

• If size of padding is 1 byte, the padding is 1.
• If size of padding is 2 bytes, the padding is 2 2.
• If size of padding is 3 bytes, the padding is 3 3 3.
• . . .

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-59

Oracles and Side Channels

• In ancient times, people asked oracles for guidance.

• In computer science, oracles are functions that give as cheaply access to information
that would otherwise be hard to compute.

• E.g. O(1) cost to ask specific NP-complete question→ polynomial hierarchy

• In cryptography, an attacker can trigger some participant O in a protocol or commu-
nication to leak information that might or might not be useful.

• Participant O may re-encrypt some message fragment
• Participant O responds with an error message explaining what went wrong
• Response time of participant O may indicate where error happened
• Response time may leak information about key if processing time depends (enough) on

which bits are set to 1.
• More obvious for the computationally expensive public key algorithms, but implementations of

symmetric ciphers have also been attacked.

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-60

Oracles and Side Channels

• In ancient times, people asked oracles for guidance.

• In computer science, oracles are functions that give as cheaply access to information
that would otherwise be hard to compute.

• E.g. O(1) cost to ask specific NP-complete question→ polynomial hierarchy

• In cryptography, an attacker can trigger some participant O in a protocol or commu-
nication to leak information that might or might not be useful.

• Participant O may re-encrypt some message fragment
• Participant O responds with an error message explaining what went wrong
• Response time of participant O may indicate where error happened
• Response time may leak information about key if processing time depends (enough) on

which bits are set to 1.
• More obvious for the computationally expensive public key algorithms, but implementations of

symmetric ciphers have also been attacked.

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-60

Oracles and Side Channels

• In ancient times, people asked oracles for guidance.

• In computer science, oracles are functions that give as cheaply access to information
that would otherwise be hard to compute.

• E.g. O(1) cost to ask specific NP-complete question→ polynomial hierarchy

• In cryptography, an attacker can trigger some participant O in a protocol or commu-
nication to leak information that might or might not be useful.

• Participant O may re-encrypt some message fragment
• Participant O responds with an error message explaining what went wrong
• Response time of participant O may indicate where error happened
• Response time may leak information about key if processing time depends (enough) on

which bits are set to 1.
• More obvious for the computationally expensive public key algorithms, but implementations of

symmetric ciphers have also been attacked.

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-60

Side Channels and padding Oracles

• Side Channel Attacks
• A general class of attacks where the attacker gains information from aspects of the physi-

cal implementation of a cryptosystem.
• Can be based on: Timing, Power Consumption, Radiation,. . .

P Pad
Ciphertext

ok

• Padding Oracle
• The oracle tells the attacker if the padding in the message was correct.
• This may be due to a message with the information.
• It can also be due to side channel like the response time.

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-61

Side Channels and padding Oracles

• Side Channel Attacks
• A general class of attacks where the attacker gains information from aspects of the physi-

cal implementation of a cryptosystem.
• Can be based on: Timing, Power Consumption, Radiation,. . .

P Pad
Ciphertext

ok

• Padding Oracle
• The oracle tells the attacker if the padding in the message was correct.
• This may be due to a message with the information.
• It can also be due to side channel like the response time.

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-61

Concept of Padding Oracle Attack (against CBC)

• Attacker sees unknown ciphertext C =
P MAC Pad

Ciphertext

that was sent from Alice to Bob

• To decrypt the ciphertext, the attacker modifies C and sends it to Bob.

P4 MAC4 Pad4
Ciphertext4

• It is unlikely that the MAC and padding are correct. So, Bob will send an error back
to Alice (and the attacker).

• In earlier versions of TLS, Bob sent back different error messages for padding errors
and for MAC errors.

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-62

Padding Oracle Attack - CBC mode decryption (revisited)

• Encryption and Decryption in CBC mode

K

C1

Enc

IV

P1

K

C2

Enc

P2

... K

Cn

Enc

Cn−1

Pn

K

P1

Dec

IV

C1

K

P2

Dec

C2

...

K

Pn

Dec

Cn−1

Cn

Encrypt

Decrypt

Time = 1 Time = 2 ... Time = nCBC

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-63

Padding Oracle Attack against CBC

• Assumptions:
• Attacker got hold of a ciphertext C (n blocks, N bytes per block)

• C was protected with Encryption in CBC mode used in MAC-then-Encode-then-Encrypt mode.
• For padding PKCS7 was used (padding of 1 byte: pad = 1, padding 2 bytes: pad = 2 2, ...)

• An oracle replies to sent ciphertexts with error messages:
• Padding error if padding doesn’t match (checked before MAC).
• MAC error if padding fits but MAC is wrong.

• Goal: Decrypt the complete ciphertext using the oracle.

• Approach:
• Start decrypting the last byte of the last block Pn,N by altering Cn−1,N and sending the

resulting ciphertext C’ to the oracle.
• When the oracle replies with a MAC error Pn,N can be calculated (see following slides).

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-64

Padding Oracle Attack against CBC

• Change the last byte of the original ciphertext block Cn−1 by XORing it with a chosen
4: C

′
n−1,N = Cn−1,N ⊕4. Then send C’ to the oracle.

• Padding error returned:
• Try again using a new4 (max of 256 tries needed).

• MAC error:
• padding was fine→ P

′
n,N = 1 (since a padding size of 1 byte means padding=P

′
n,N = 1)

• correct padding means the last byte was 1→ P
′
n,N = Pn,N ⊕4 = 1→ Pn,N = 1⊕4

Cn−1
C
′
n−1,N = Cn−1,N⊕1

C
′
n−1,N = Cn−1,N⊕2C
′
n−1,N = Cn−1,N⊕4

DecryptK

...

P
′
n−1

C
′
n

DecryptK

Pn

P
′
n,N = Pn,N ⊕ 1

P
′
n,N = Pn,N ⊕ 2P
′
n,N = Pn,N ⊕4 = 1

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-65

Padding Oracle Attack against CBC

• Change the last byte of the original ciphertext block Cn−1 by XORing it with a chosen
4: C

′
n−1,N = Cn−1,N ⊕4. Then send C’ to the oracle.

• Padding error returned:
• Try again using a new4 (max of 256 tries needed).

• MAC error:
• padding was fine→ P

′
n,N = 1 (since a padding size of 1 byte means padding=P

′
n,N = 1)

• correct padding means the last byte was 1→ P
′
n,N = Pn,N ⊕4 = 1→ Pn,N = 1⊕4

Cn−1

C
′
n−1,N = Cn−1,N⊕1

C
′
n−1,N = Cn−1,N⊕2

C
′
n−1,N = Cn−1,N⊕4

DecryptK

...

P
′
n−1

C
′
n

DecryptK

Pn

P
′
n,N = Pn,N ⊕ 1

P
′
n,N = Pn,N ⊕ 2

P
′
n,N = Pn,N ⊕4 = 1

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-65

Padding Oracle Attack against CBC

• Change the last byte of the original ciphertext block Cn−1 by XORing it with a chosen
4: C

′
n−1,N = Cn−1,N ⊕4. Then send C’ to the oracle.

• Padding error returned:
• Try again using a new4 (max of 256 tries needed).

• MAC error:
• padding was fine→ P

′
n,N = 1 (since a padding size of 1 byte means padding=P

′
n,N = 1)

• correct padding means the last byte was 1→ P
′
n,N = Pn,N ⊕4 = 1→ Pn,N = 1⊕4

Cn−1

C
′
n−1,N = Cn−1,N⊕1C
′
n−1,N = Cn−1,N⊕2

C
′
n−1,N = Cn−1,N⊕4

DecryptK

...

P
′
n−1

C
′
n

DecryptK

Pn

P
′
n,N = Pn,N ⊕ 1P
′
n,N = Pn,N ⊕ 2

P
′
n,N = Pn,N ⊕4 = 1

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-65

Padding Oracle Attack against CBC

• Now we want to decrypt Pn,N−1. For that a padding of length 2 is needed.

• Since Pn,N is known, we can calculate C
′
n−1,N so that P

′
n,N = 2

• Pn,N ⊕ C
′
n−1,N = 2→ C

′
n−1,N = Pn,N ⊕ 2

• Now find C
′
n−1,N−1 that satisfies C

′
n−1,N ⊕ Pn,N−1 = 2

Cn−1
C
′
n−1,N

DecryptK

...

P
′
n−1

C
′
n

DecryptK

Pn

P
′
n,N

• As before, we need to try up to 256 values, all values except for the correct one generate
a padding error. The correct one produces a MAC error. →We know Pn,N−1

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-66

Padding Oracle Attack against CBC

• To completely decrypt Cn we have to repeat the procedure until all bytes of the block
are decrypted. In the figure with 8 bytes per block, the last padding we generate is 8
8 8 8 8 8 8 8.

• To decrypt Cn−1 we can cut off Cn and repeat the same procedure with Cn−1 as last
block. For decrypting C1 we can use the IV as ciphertext for the attack modifications.

Cn−2
C
′
n−2,N

DecryptK

...

P
′
n−2

C
′
n−1

DecryptK

Pn−1

P
′
n−1,N

IV
IVN C1

DecryptK

P1

P
′
1,N

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-67

Final remarks

• The attack was against CBC mode used in MAC-then-Encode-then-Encrypt mode.
• Padding Oracle attack known long in cryptography.
• Mode still used in SSL / TLS. Hacks have utilized that. However, defenses have been

added.

• CBC with Encode-then-Encrypt-then-MAC does not have this vulnerability.
• Because MAC check would fail first, process would be aborted, and padding problems

would then not be leaked.

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-68

Literature

Bell95 M. Bellare and P. Rogaway, Provably Secure Session Key Distribution - The Three
Party Case, Proc. 27th STOC, 1995, pp 57–64

Boyd03 Colin Boyd, Anish Mathuria, “Protocols for Authentication and Key Establishment”,
Springer, 2003

Bry88a R. Bryant. Designing an Authentication System: A Dialogue in Four Scenes. Project
Athena, Massachusetts Institute of Technology, Cambridge, USA, 1988.

Diff92 W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and authenticated key
exchanges. Designs, Codes, and Cryptography, 1992

Dol81a D. Dolev, A.C. Yao. On the security of public key protocols. Proceedings of IEEE
22nd Annual Symposium on Foundations of Computer Science, pp. 350-357, 1981.

Fer00 Niels Ferguson, Bruce Schneier, “A Cryptographic Evaluation of IPsec”.
http://www.counterpane.com/ipsec.pdf 2000

Fer03 Niels Ferguson, Bruce Schneier, „Practical Cryptography“, John Wiley & Sons, 2003

Gar03 Jason Garman, “Kerberos. The Definitive Guide”, O’Reilly Media, 1st Edition, 2003

Kau02a C. Kaufman, R. Perlman, M. Speciner. Network Security. Prentice Hall, 2nd edition,
2002.

Koh94a J. Kohl, C. Neuman, T. T’so, The Evolution of the Kerberos Authentication System. In
Distributed Open Systems, pages 78-94. IEEE Computer Society Press, 1994.

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-69

http://www.counterpane.com/ipsec.pdf

Literature

Mao04a W. Mao. Modern Cryptography: Theory & Practice. Hewlett-Packard Books, 2004.

Nee78 R. Needham, M. Schroeder. Using Encryption for Authentication in Large Networks
of Computers. Communications of the ACM, Vol. 21, No. 12, 1978.

Woo92a T.Y.C Woo, S.S. Lam. Authentication for distributed systems. Computer, 25(1):39-52,
1992.

Lowe95 G. Lowe, „An Attack on the Needham-Schroeder Public-Key Authentication Protocol”,
Information Processing Letters, volume 56, number 3, pages 131- 133, 1995.

OCB1 Rogaway, P., Bellare, M., Black, J., and T. Krovetz, "OCB: A Block-Cipher Mode of
Operation for Efficient Authenticated Encryption", ACM Conference on Computer and
Communications Security 2001 - CCS

OCB T.Krovetz, P. Rogaway, „The OCB AuthenticatedEncryption Algorithm“
http://tools.ietf.org/html/draft-irtf-cfrg-ocb-03

RFC 4106 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload
(ESP)

RFC 5288 AES Galois Counter Mode (GCM) Cipher Suites for TLS.

RFC 7253 The OCB Authenticated-Encryption Algorithm

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-70

http://tools.ietf.org/html/draft-irtf-cfrg-ocb-03

Literature

RFC2560 M. Myers, et al., “X.509 Internet Public Key Infrastructure Online Certificate Status
Protocol – OCSP”, June 1999

RFC3961 K. Raeburn, “Encryption and Checksum Specifications for Kerberos 5”, February
2005

RFC3962 K. Raeburn, “Advanced Encryption Standard (AES) Encryption for Kerberos 5”, Feb-
ruary 2005

RFC4757 K. Jaganathan, et al., “The RC4-HMAC Kerberos Encryption Types Used by Microsoft
Windows ”, December 2006

RFC4120 C. Neuman, et al., “The Kerberos Network Authentication Service (V5)”, July 2005

RFC4537 L. Zhu, et al, “Kerberos Cryptosystem Negotiation Extension”, June 2006

RFC5055 T. Freeman, et al, “Server-Based Certificate Validation Protocol (SCVP)”, December
2007

Chapter 8: Secure Channel – Attacks against a Secure Channel (Padding oracle) 8-71

	Secure Channel
	Secure Channel
	MAC-then-Enc vs. Enc-then-MAC
	Secure Channel Implementation
	Secure Channel (ESP) in the OpenBSD Kernel
	Authenticated Encryption With Associated Data
	AEAD & Secure Channel (ESP) in the Linux Kernel
	Attacks against a Secure Channel (Stream Cipher)
	Attacks against a Secure Channel (Padding oracle)

