
1

10 Cryptography 2

Heiko Niedermayer,
Georg Carle
Acknowledgements:
Günter Schäfer,
Benjamin Hof

2

Acknowledgements

• Günter Schäfer (TU Ilmenau), some slides still from the original
network security lecture developed at KIT (then TU Karlsruhe)

• Benjamin Hof: inspirations from ilab Security slides

3

Overview

• Formalizing Integrity Protection

• Recap MAC

• Public Key Cryptography
• RSA Cipher
• Scheme for Confidentiality
• Scheme for Integrity

• Hybrid Encryption Scheme

• Diffie-Hellman

4

Integrity Protection

Integrity protection has two functions

• Sign
• !, #:= &'()* !
• Generates protection
• Signature / MAC: 	#

• Verify
• 	,-.'/0* !, #
• Returns Boolean (1 = True, 0 = False)
• Specifies check of integrity

5

Formalizing of Integrity Protection – Chosen Message
Attack

The goal of this game is to successfully forge a message.

Challenger ! Adversary		+

, ← ./0 12 	 30456	12
7

output	(7=, ?=)

Adversary		+ succeeds if and only if 	A/B3CDE 7F, ?= =1

7 ,?

…

Adversary can ask for
a polynomial amount of
examples where it selects
the message.

Then it tries to forge a
new message 7= that was
not yet signed by the
challenger

6

Formalizing Integrity Protection - Discussion

• Adversary has to come up with a matching signature

• Guessing
• n bits of hash /signature / MAC length

à guessing has 2"# chance to hit

• Adversary wins if it wins with chance significantly larger than
2"#

• Protection scheme secure under the model if adversary wins
only with chance 2"# + %	and	*+,--	% > 0

7

Recap: MAC

Lets	assume

)*+,- . = 	., ()ℎ33 . ⊕)ℎ33(6))
• How does verify look like?

89:*;<- ., = ≔ = =)ℎ33 . ⊕)ℎ33 6

• Is it secure under the model?
• No, attacker can send message m, compute sha3(m) and

compute sha3(k) from the = returned by the challenger
• It can then forge the =′ for an m’.

What about:

)*+,- . = 	.,@ABC − E@B256(., 6)

)*+,- . = 	., BIE − JCKC −ABC(., 6)

8

Public Key Cryptography

• Outline
• RSA
• ECC
• Hybrid Encryption
• Diffie-Hellman

Asymmetric Cipher
k_pub

p (b bits)
c (b bits)

Asymmetric Cipher
k_secret
c (b bits)

p (b bits)

9

Some Mathematical Background for RSA

Definition: Euler’s F Function:

Let F(n) denote the number of positive integers m < n, such that m is

relatively prime to n.

à “m is relatively prime to n” = the greatest common divisor (gcd)

of m and n is one.

Let p be prime, then {1,2,…,p-1} are relatively prime to p, Þ F(p) = p-1

Let p and q be distinct prime numbers and n = p ´ q, then

F(n) = (p-1) ´ (q-1)

Euler’s Theorem:

Let n and a be positive and relatively prime integers,

Þ aF(n) º 1 MOD n

10

The RSA Public Key Algorithm

RSA Key Generation:

Randomly choose p, q distinct and large primes
(really large: hundreds of bits = 100-200 digits each)

Compute n = p ´ q, calculate F(n) = (p-1) ´ (q-1) (Euler’s F
Function)

Pick e Î Z such that 1 < e < F(n) and e is relatively prime to F(n),
i.e. gcd(e,F(n)) = 1

Use the extended Euclidean algorithm to compute d such that

e ´ d º 1 MOD F(n)

The public key pk is (n, e)

The secret key sk is (n, d).

11

The RSA Public Key Algorithm

Definition: RSA function

Let p and q be large primes; let n = p ´ q.
Let e Î N be relatively prime to F(n).

Then RSA(e,n) := x → xe MOD n
Example:

Let M be an integer that represents the message to be
encrypted, with M positive, smaller than n.

To encrypt, compute: C º Me MOD n

Decryption:

To decrypt, compute: M’ º Cd MOD n

12

The RSA Public Key Algorithm

Why does RSA work:

As d ´ e º 1 MOD F(n)

Þ$ k Î Z: (d ´ e) = 1 + k ´ F(n)
We sketch the “proof” for the case where M and n are relatively prime

M’ º Cd MOD n

º (Me) d MOD n

º M(e´ d) MOD n

º M(1 + k ´ F(n)) MOD n

º M ´ (MF (n))k MOD n

º M ´ 1k MOD n (Euler’s theorem*)

º M MOD n = M

In case where M and n are not relatively prime, Euler’s theorem can
not be applied.

13

RSA for Confidentiality

• RSA assumption for confidentiality:
• If we chose a random !	and	compute	c = 	!./01	2
• Then x cannot be recovered (~ relation between c and x looks

random enough when keys unknown).

• Alice wants to send x to Bob.
• She knows his public key (1345, 2345)
• She computes c := !789:		/01	2345
• She sends c to Bob. He calculates ;.89:/01	2345 = x.

Knows her public key, her secret key,
and Bob‘s public key

Knows his public key, his secret key,
and Alice‘s public key

14

Chosen Plaintext Attack

Challenger ! Adversary		+

,-, /- ← 123456789:;:/ 1= 	
,-

>?,>@

A ← 0,1

C

output	guess	b’

>?,>@ of
equal size selected
by adversary

C

…

m

C ≔ L3CMN(>)	

C ≔ L3CMN(>)	

Note that adversary can
calculate c herself in case
of CPA and asymmetric
encryption. Still the
scheme should not leak
information so that + can
determine the correct b’.
Deterministic schemes
will fail.

15

Chosen Ciphertext Attack

Challenger ! Adversary		+

,-, /- ← 123456789:;:/ 1= 	
,-

>?,>@

A ← 0,1

C

output	guess	b’

>?,>@ of
equal size selected
by adversary

m

…

c

> ≔ L2CMN(>)	

C ≔ Q3CRN(>)	

16

RSA for Confidentiality

• Pure use of Textbook RSA is deterministic

• Adversary can send !",!$ as chosen plaintext and then resend
them.

• Other issues
• What happens with m=0 ? à c = 0 ?
• What happens when !% < 	(? à) = !	?

• To achieve confidentiality, we have to use the correct encryption
scheme containing the RSA algorithm as its basis.

• In the context of RSA, these schemes are called Padding
Schemes.
• E.g. PKCS, OAEP
• They add random bits (non-determinism) and tend to avoid inputs

like 0.

17

RSA-OAEP (Optimal asymmetric encryption padding)

• G, H are hash functions

• Note that n in the figure refers to the bitlength of the RSA
modulus.

• !":== %||') ∶= !"+,-.!/0	1234

Figure taken from Wikipedia,
Creative Commons
https://de.wikipedia.org/wiki/Opti
mal_Asymmetric_Encryption_Pad
ding

18

RSA for Integrity

• If the private key is used for encryption, anyone knowing the
public key can decrypt.

• But what is the verify function?
• If bits are flipped, it just decrypts to something else…

• Basic scheme
• Alice uses a cryptographic hash function h and computes h(m)
• She then encrypts h(m) with her secret key ! ← #$%&'()*+,(h(m))

• She send m, !
• Bob verifies that h(m) = -.%/'()*+,(!)

Knows her public key, her secret key,
and Bob‘s public key

Knows his public key, his secret key,
and Alice‘s public key

19

RSA-PSS

• There are dedicates signature schemes for RSA, e.g. RSA-PSS

• RSA-PSS hashes the message twice, adds padding, adds salt,
and fills up the necessary bits

• The result is then encrypted with the secret key.

• It is part of the PKCS standards.

20

Hybrid Encryption Schemes

• Public Key cryptography is very expensive, many orders of
magnitude slower than symmetric encryption or hashing.

• Hybrid encryption scheme
• Alice protects shared symmetric key k with Bob’s public key
• Alice then encrypts the large message with symmetric key k.

Knows her public key, her secret key,
and Bob‘s public key

Knows his public key, his secret key,
and Alice‘s public key

21

Hybrid Encryption Schemes / Key Agreement – Diffie
Hellman
• Instead of Alice sending the symmetric key, a protocol could be

used to generate a shared key between Alice and Bob.

• This Key Agreement is part of a larger protocol that usually
• Authenticates the entitites
• Provides additional protections for the communication
• Keys are generated from result of Key Agreement via a Key

Derivation Function (KDF)

• The Diffie-Hellman protocol is a public key scheme for key
agreement.

22

Diffie-Hellman, Some Mathematical Background

Theorem/Definition: primitive root, generator

Let p be prime. Then $ g Î {1,2,…,p-1} such that

{ga | 1 £ a £ (p-1) } = {1,2,…,p-1} if everything is computed MOD p

i.e. by exponentiating g you can obtain all numbers between 1 and (p
-1)

g is called a primitive root (or generator) of {1,2,…,p-1}

Example: Let p = 7. Then 3 is a primitive root of {1,2,…,p-1}

1 º 36 MOD 7, 2 º 32 MOD 7, 3 º 31 MOD 7, 4 º 34 MOD 7,

5 º 35 MOD 7, 6 º 33 MOD 7

23

Diffie-Hellman, Some Mathematical Background

Definition: discrete logarithm

Let p be prime, g be a primitive root of {1,2,…,p-1} and c be any
element of {1,2,…,p-1}. Then $ z such that: gz º c MOD p
z is called the discrete logarithm of c modulo p to the base g

Example: 6 is the discrete logarithm of 1 modulo 7 to the base 3 as
36 º 1 MOD 7

The calculation of the discrete logarithm z when given g, c, and p is a
computationally difficult problem and the asymptotical runtime of
the best known algorithms for this problem is exponential in the bit-
length of p

24

Diffie-Hellman Key Exchange (Textbook version)

Whitfield
Diffie

Martin E.
Hellman

Generate random
a < p

Compute
X = ga MOD p

Generate random
b < p

Compute
Y = gb MOD p

Compute K = Xb

MOD p
Compute

K = Ya MOD p

(p, g, X)

Y

25

Diffie-Hellman

• The DH construction contains insecure weak values,
• g = 1, a = 0, b=0
• Certain combinations of g and p
• While Alice and Bob may try to avoid them, an attacker might not.

• ECC DH is Diffie-Hellman based on Elliptic Curves.

26

Perfect Forward Secrecy

• Assumption: for every new session a new DH key is generated
and old keying material is deleted.

• Consequence: An attacker that has

• Eavesdropped all messages

• Broken a longterm key that protected the messages (e.g. Bob’s
private key)
à Can now read the plaintext of the session establishment

• Still, it cannot obtain the session key because the agreement is
protection with DH (= an additional layer of cryptography that the
attacker would need to break, hard due to DLog)
àThe attacker cannot decrypt the messages of the session.

27

RSA vs ECC vs Symmetric vs Hash Functions

• Elliptic Curve Cryptography (ECC) is a variant of Public Key
cryptography that is based on elliptic curves

• ECC requires less bits to achieve to achieve a similar security
as RSA

• ECC is usually more efficient than RSA

• Key length and security level
• “Similar” level: 256 bits ECC vs 3072 bits RSA / DH vs 128 bits

Symmetric Key Crypto vs 256 bits Cryptographic Hash Function
(output length)

• For Diffie-Hellman, normal Dlog similar to RSA, ECC Dlog similar
to ECC

• For key with the long-term use you should use significantly larger
key size.

